참조1 :https://github.com/linkedin/luminol

참조2 : https://www.kaggle.com/caesarlupum/anomaly-detection-time-series-linkedin-luminol/notebook

 

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import os
import gc
import warnings

from scipy.stats import norm
warnings.filterwarnings('ignore')
pd.set_option('max_columns', 150)
pd.set_option('max_rows', 150)

import matplotlib.pyplot as plt
from matplotlib import rcParams
import seaborn as sns
from scipy import stats
#To plot figs on jupyter
%matplotlib inline
# figure size in inches
rcParams['figure.figsize'] = 14,6

import plotly.offline as py
py.init_notebook_mode(connected=True)
import plotly.graph_objs as go
import plotly.tools as tls
import warnings
warnings.filterwarnings('ignore')
pd.set_option('max_columns', 200)
pd.set_option('max_rows', 200)
pd.options.display.float_format = '{:.5f}'.format
## DATASET 1 (ent1, ds1)------------------------------------------------------------------------
mu, sigma = 0.0, 1.0
ent1 = np.zeros((10000))
for i in range(10):
#     print(mu)
    for j in range(1000):
        ent1[1000*i+j] = np.random.normal(mu, sigma)
    mu = mu + 9 - i

a1 = 0.6
a2 = -0.5
ds1 = np.zeros((10000))
ds1[0] = ent1[0]
ds1[1] = ent1[1]
for i in range(2,10000):
    ds1[i] = a1*ds1[i-1] + a2*ds1[i-2] + ent1[i]
## DATASET 2 (ent2 ds2 )------------------------------------------------------------------------
mu = 0.0
ent2 = np.zeros((10000))
for i in range(10):
#     print(mu)
    for j in range(1000):
        sigma = 0.1/(0.01 + (10000 - (i*1000 + j))/10000)
        ent2[1000*i+j] = np.random.normal(mu, sigma)
    mu = mu + 1

a1 = 0.6
a2 = -0.5
ds2 = np.zeros((10000))
ds2[0] = ent1[0]
ds2[1] = ent1[1]
for i in range(2,10000):
    ds2[i] = a1*ds2[i-1] + a2*ds2[i-2] + ent2[i]

## DATASET 3 (ds3) ------------------------------------------------------------------------
mu, sigma1, sigma3 = 0.0, 1.0, 3.0
ds3 = np.zeros((10000))
for i in range(10):
    if i in {0,2,4,6,8}:
        for j in range(1000):
            ds3[1000*i+j] = np.random.normal(mu, sigma1)
    else:
        for j in range(1000):
            ds3[1000*i+j] = np.random.normal(mu, sigma3)
plt.figure(figsize=(16,4))
plt.plot(ent1)
plt.title('Dataset 1  ent1')
plt.ylabel('Values')
plt.xlabel('Count')
plt.legend()

plt.figure(figsize=(16,4))
plt.plot(ent2)
plt.title('Dataset 2  ent2')
plt.ylabel('Values')
plt.xlabel('Count')
plt.legend()

plt.figure(figsize=(16,4))
plt.plot(ds1)
plt.title('Dataset 3  ds1')
plt.ylabel('Values')
plt.xlabel('Count')
plt.legend()

plt.figure(figsize=(16,4))
plt.plot(ds2)
plt.title('Dataset 4  ds2')
plt.ylabel('Values')
plt.xlabel('Count')
plt.legend()

plt.figure(figsize=(16,4))
plt.plot(ds3)
plt.title('Dataset 5  ds3')
plt.ylabel('Values')
plt.xlabel('Count')
plt.legend()

plt.show()

 

import luminol
from luminol import anomaly_detector,correlator
from luminol.anomaly_detector import AnomalyDetector
from luminol.correlator import Correlator

#Luminol - only if module 'luminol was installed'
#data preprocessing for the framework

data = np.array(ent1)
ts_s = pd.Series(data)
ts_dict = ts_s.to_dict()

data2 = np.array(ent2)
ts_s2 = pd.Series(data)
ts_dict2 = ts_s.to_dict()


detector = anomaly_detector.AnomalyDetector(ts_dict)
anomalies = detector.get_anomalies()
anomalies
if anomalies:
    time_period = anomalies[0].get_time_window()
    correlator = correlator.Correlator(ts_dict, ts_dict2, time_period)
    
    
 print(correlator.get_correlation_result().coefficient)
 
 def scoreLuminolALLData(ts_dict):    
    data = np.array(ts_dict)
    ts_s = pd.Series(data)
    ts_dict = ts_s.to_dict()

    detector = anomaly_detector.AnomalyDetector(ts_dict)
    score = detector.get_all_scores()
    score_v = []
    for timestamp, value in score.iteritems():
        score_v.append(value)
#         print(timestamp, value)
    return score_v
dataplot1 = scoreLuminolALLData(ent1)    
dataplot2 = scoreLuminolALLData(ent2) 
dataplot3 = scoreLuminolALLData(ds1)    
dataplot4 = scoreLuminolALLData(ds2)        
dataplot5 = scoreLuminolALLData(ds3) 

dataplot1

더보기
더보기
더보기

dataLUMINOL_dataset1 = np.array(dataplot1)
from scipy import stats
dataLUMINOL_dataset1 = stats.describe(dataplot1)
dataLUMINOL_dataset1

 

qt25_ds1 = np.percentile(dataplot1, 25)  # Q1 백분위 25퍼센트
qt50_ds1 = np.percentile(dataplot1, 50)  # Q2 백분위 25퍼센트
qt75_ds1 = np.percentile(dataplot1, 75)  # Q3 백분위 25퍼센트
qt25_ds1, qt50_ds1, qt75_ds1

 

dfLUMINOL_dataset1 = pd.DataFrame(dataplot1, columns=['Score'])
dfLUMINOL_dataset1.value_counts()
# 이건 퍼센테이지가 왜저렇게 나왔는지 분석하기 위해서 보여준것임. 

 

 

def plot_anomaly_score_low_higt(datascore, data):
    datascore_ = np.array(datascore)
    from scipy import stats
    datascore_ = stats.describe(datascore)
    
    datascore_ = pd.DataFrame(datascore, columns=['Score'])

    delta = np.percentile(datascore, 75)
    print('Threashold ',delta)

    plt.figure(figsize=(16,6))
    plt.plot(data)
    plt.title("data count")        

    plt.figure(figsize=(16,6))
    plt.plot(datascore)
    plt.title("data count")        

    
    plt.figure(figsize=(16,6))
    df_high_data_ = datascore_[datascore_ <= delta]
    df_high_score_ = datascore_[datascore_ > delta]
    
    plt.plot(datascore_.index, datascore_.Score.fillna(1), c='gray', alpha=0.4)
    plt.scatter(df_high_data_.index, df_high_data_.values, label='Inline', s=10)
    plt.scatter(df_high_score_.index, df_high_score_.values, label='Outlier', c='red', s=10)
    plt.margins(x=0.01,y=0.2)
    plt.title('Anomaly Score ')
    plt.ylabel('Score')
    plt.xlabel('Data Count')
    plt.legend()
    plt.show()

 

dataLUMINOL_dataset2 = np.array(dataplot2)
from scipy import stats
dataLUMINOL_dataset2 = stats.describe(dataplot2)
dataLUMINOL_dataset2

qt25_ds2 = np.percentile(dataplot2, 25)  # Q1
qt50_ds2 = np.percentile(dataplot2, 50)  # Q2
qt75_ds2 = np.percentile(dataplot2, 75)  # Q3
qt25_ds2,qt50_ds2, qt75_ds2


dfLUMINOL_dataset2 = pd.DataFrame(dataplot2, columns=['Score'])
plot_anomaly_score_low_higt(dfLUMINOL_dataset2, ent2)

 

dataLUMINOL_dataset4 = np.array(dataplot4)
from scipy import stats
dataLUMINOL_dataset4 = stats.describe(dataplot4)
dataLUMINOL_dataset4


qt25_ds4 = np.percentile(dataplot4, 25)  # Q1
qt50_ds4 = np.percentile(dataplot4, 50)  # Q2
qt75_ds4 = np.percentile(dataplot4, 75)  # Q3
qt25_ds4, qt50_ds4, qt75_ds4

dfLUMINOL_dataset4 = pd.DataFrame(dataplot4, columns=['Score'])
plot_anomaly_score_low_higt(dfLUMINOL_dataset4, ds2)

+ Recent posts