1. AWS 인스턴스 시작 (쿠다 깔려있는걸로)

Deep Learning AMI GPU CUDA 11.4.1 (Ubuntu 18.04) 20211204 사용함 (CUDA 11.4)

 

2. CUDA TOOLKIT 깔기

https://developer.nvidia.com/cuda-11-4-0-download-archive?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=18.04&target_type=deb_local

위에 참조해서 깔기

— nvcc -V 제대로 나오면 설치완 —

 

3. 아래 터미널에 입력

cd /usr/local/cuda-11.4/samples/1_Utilities/deviceQuery
sudo make
./deviceQuery

 

4. 결과

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "Tesla T4"
  CUDA Driver Version / Runtime Version          11.4 / 11.4
  CUDA Capability Major/Minor version number:    7.5
  Total amount of global memory:                 15110 MBytes (15843721216 bytes)
  (040) Multiprocessors, (064) CUDA Cores/MP:    2560 CUDA Cores
  GPU Max Clock rate:                            1590 MHz (1.59 GHz)
  Memory Clock rate:                             5001 Mhz
  Memory Bus Width:                              256-bit
  L2 Cache Size:                                 4194304 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
  Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total shared memory per multiprocessor:        65536 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  1024
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 3 copy engine(s)
  Run time limit on kernels:                     No
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Enabled
  Device supports Unified Addressing (UVA):      Yes
  Device supports Managed Memory:                Yes
  Device supports Compute Preemption:            Yes
  Supports Cooperative Kernel Launch:            Yes
  Supports MultiDevice Co-op Kernel Launch:      Yes
  Device PCI Domain ID / Bus ID / location ID:   0 / 0 / 30
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 11.4, CUDA Runtime Version = 11.4, NumDevs = 1
Result = PASS

+ Recent posts