1. AWS 인스턴스 시작 (쿠다 깔려있는걸로)
Deep Learning AMI GPU CUDA 11.4.1 (Ubuntu 18.04) 20211204 사용함 (CUDA 11.4)
2. CUDA TOOLKIT 깔기
위에 참조해서 깔기
— nvcc -V 제대로 나오면 설치완 —
3. 아래 터미널에 입력
cd /usr/local/cuda-11.4/samples/1_Utilities/deviceQuery
sudo make
./deviceQuery
4. 결과
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "Tesla T4"
CUDA Driver Version / Runtime Version 11.4 / 11.4
CUDA Capability Major/Minor version number: 7.5
Total amount of global memory: 15110 MBytes (15843721216 bytes)
(040) Multiprocessors, (064) CUDA Cores/MP: 2560 CUDA Cores
GPU Max Clock rate: 1590 MHz (1.59 GHz)
Memory Clock rate: 5001 Mhz
Memory Bus Width: 256-bit
L2 Cache Size: 4194304 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total shared memory per multiprocessor: 65536 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 1024
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 3 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Enabled
Device supports Unified Addressing (UVA): Yes
Device supports Managed Memory: Yes
Device supports Compute Preemption: Yes
Supports Cooperative Kernel Launch: Yes
Supports MultiDevice Co-op Kernel Launch: Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 0 / 30
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 11.4, CUDA Runtime Version = 11.4, NumDevs = 1
Result = PASS
'<하드웨어> > GPU' 카테고리의 다른 글
GPU register,global,shared,local,constant,texture 메모리 정의구분 및 계층구조 + gpu구조 (0) | 2022.03.15 |
---|---|
DeviceQuery 정리 (0) | 2022.03.15 |
AMD GPU(g4ad,NNv4) 에서 GPU+Tensorflow 사용 실패 (클라우드 환경에서 지원X) (0) | 2022.01.26 |
멀티GPU -> 단일GPU만 사용 + NVIDIA SMI GPU util 이 낮을때 (0) | 2022.01.26 |
GPU TYPE 별 CLOUD 인스턴스 (aws,azure,IBM) (0) | 2022.01.26 |